Φ = B * A * cos(θ)
EMF = -dΦ/dt
ε = -dΦ/dt
L = NΦ/I
W = 1/2 * L * I^2
f = 1 / (2π√LC)
Maxwell's equations are a set of four fundamental equations that describe the behavior of electric and magnetic fields.
Gauss's Law for Electric Fields
This equation states that the electric flux through any closed surface is proportional to the charge enclosed within the surface. In mathematical terms, it can be written as:
where
Gauss's Law for Magnetic Fields
This equation states that the magnetic flux through any closed surface is zero. In mathematical terms, it can be written as:
There are no magnetic charges. Magnetic field lines always close in themselves.
Faraday's Law of Electromagnetic Induction
This equation states that a changing magnetic field induces an electric field. In mathematical terms, it can be written as:
where
Ampere's Law with Maxwell's Correction
This equation relates the magnetic field to the current density and the rate of change of the electric field. In mathematical terms, it can be written as: